
HAL Id: hal-02977813
https://hal.science/hal-02977813

Submitted on 26 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning methods for anomaly detection in IoT
networks, with illustrations

Vassia Bonandrini, Jean-François Bercher, Nawel Zangar

To cite this version:
Vassia Bonandrini, Jean-François Bercher, Nawel Zangar. Machine learning methods for anomaly
detection in IoT networks, with illustrations. Boumerdassi S., Renault É., Mühlethaler P. (eds),
Machine Learning for Networking, Lecture Notes in Computer Science, vol 12081. Springer, pp.287-
295, 2020, �10.1007/978-3-030-45778-5_19�. �hal-02977813�

https://hal.science/hal-02977813
https://hal.archives-ouvertes.fr

Machine learning methods for anomaly detection in IoT
networks, with illustrations

Vassia Bonandrini1, Jean-François Bercher2 and Nawel Zangar2

1 ESIEE Paris, France
vassia.bonandrini@edu.esiee.fr

2 LIGM, UMR 8049, École des Ponts, UPEM, ESIEE Paris, CNRS, UPE, France
jf.bercher@esiee.fr, nawel.zangar@esiee.fr

Abstract. IoT devices have been the target of 100 million attacks in the first
half of 2019 [1]. According to [2], there will be more than 64 billion Internet of
Things (IoT) devices by 2025. It is thus crucial to secure IoT networks and
devices, which include significant devices like medical kit or autonomous car.
The problem is complicated by the wide range of possible attacks and their
evolution, by the limited computing resources and storage resources available
on devices. We begin by introducing the context and a survey of Intrusion
Detection System (IDS) for IoT networks with a state of the art. So as to test
and compare solutions, we consider available public datasets and select the
CIDDS-001 Dataset. We implement and test several machine learning
algorithms and show that it is relatively easy to obtain reproducible results
[20] at the state-of-the-art. Finally, we discuss embedding such algorithms in
the IoT context and point-out the possible interest of very simple rules.

Keywords: Internet of Things, IoT, IDS, NIDS, Intrusion Detection System, rules,
CIDDS-001

1 Introduction

The problem of securing electronic devices is as old as computers exist, but with
time computers have gained more and more resources, so IDS in these devices
became more efficient. Now, a lot of different small devices without the power of
modern computers are connected to a network and are the target of many attacks.
Moreover, every IoT system is different and has specific worries depending on the
type of the attack (DDoS, Blackhole, Sybil Attack…) they want to be protected from.
Wireless Sensor Networks (WSN) for instance has unique characteristics such as
limited power supply, low transmission bandwidth, small memory size, and data
storage [3]. It is thus crucial to develop and deploy new IDS.

Section 2 presents a brief review of the literature and Section 3 presents the
problem of selecting or simulating a dataset to test IDS. Section 4 presents the
implementation, tests, and results of several machine learning algorithms for outlier
detection for CIDDS-001 dataset. Section 5 presents some simple decision rules that

2

can be introduced in an IoT network to work like an IDS. Section 6 presents a
summary of the conclusions and future work.

2 Related work

Doshi et al. [4] simulate IoT networks with raspberry Pi and virtual machines. They
collect network data from their system and test this data with 5 algorithms: K-
nearest neighbors, Support Vector Machine (SVM) with linear kernel, decision tree,
random forest, and neural network. The specificity of their work is to use stateful
features and they get up to 30% better performance compared to without these
features.
Hussain et al. [5] list for each problem many surveys that use machine learning
techniques (table IV on the document). For anomaly and intrusion detection:

- K-means clustering and Decision Tree [6]
- Artificial Neural Network ANN [7]
- Novelty and Outlier Detection [8]
- Decision Tree [9]
- Naive Bayes [9], [10]

Butun et al. [3] classify the IDS methodology of IDS in 3 categories:
1 - Anomaly Based detection:
We create an activity profile for each member of the network and a certain amount
of deviation is reported as an anomaly. This method is adequate to detect never
known attacks but we need to update the profiles periodically because the network
behavior can change rapidly.
2 - Misuse based detection
A signature (profile) of the previously known attack is used and is used as a reference
to flag the next attacks. The disadvantage of this method is that it cannot detect new
type of attacks, but the false positive rate is very low.
3 - Specification based detection
That’s a mix of the previous ones, “a set of specifications and constraints that
describe the correct operation of a program or protocol is defined.” [3] But it takes a
lot of time to develop special rules to get a low false-positive rate.
Some surveys have unclear results, sometimes there is no result. There are also very
few simulations and implementations in real systems.

3 Dataset

Selecting a dataset to design and evaluate NIDS ML-based algorithms is not
immediate and may be a full part challenge.

One of the most used datasets is the KDD cup99 set, but it still presents defaults,
as emphasized by Tavallaee et al. [11]:

- a lot of redundant measures

3

- some parts of the train set were used as test sets in some studies
- set is too long forcing to take only part of the set.

Ring et al. [12] did an exhaustive list of network-based detection data set and
compared them. One of the recent and not too heavy dataset is the CIDDS-001
(Coburg Intrusion Detection Data Set) [13] which was described as follows:

“The CIDDS-001 data set was captured within an emulated small business
environment in 2017, contains four weeks of unidirectional flow-based network
traffic, and comes along with a detailed technical report with additional information.
As special feature, the data set encompasses an external server which was attacked
in the internet. In contrast to honeypots, this server was also regularly used by the
clients from the emulated environment. The CIDDS-001 data set is publicly available
and contains SSH brute force, DoS and port scan attacks as well as several attacks
captured from the wild." [12]

The dataset contains 14 features as follow.

Table 1. Features within the CIDDS-001 data set, from [13]

In our experiment, we used the “Class” attribute as the target for classification,
removed the AttackType, AttackID and AttackDescription features which are
obviously correlated with the “attacker” class. Furthermore, since IPs were
anonymized, they do not convey information so we also removed them. We also use
“Date first seen” as the x-axis. Finally, we transformed Flags, Class and Proto, which
are categorical features, into “dummy variables” by one-hot encoding.

In the CIDDS-01 dataset, we used the internal-week1 subset of observations, as it
contains 42 of the 92 attacks on the entire dataset.

Anomalies are labeled as victim or attacker. However, this file has more than 8
million rows and less than 20% are anomalies. Hence we face a case of imbalanced
classes. In such a case, the more represented class can have a “masking effect” on

4

the others; this has been studied in [14] for this dataset. Given the high number of
instances available, rebalancing the classes can be simply done by subsampling the
majority class (otherwise, one can also oversample the minority classes by creating
new, synthetic, instances). In our case, we decided to (a) shuffle the data, (b) keep
half of the data for a final evaluation (c) subsample the other half to keep about
180000 instances per class.

4 Experiments and results

The experiments were carried out using Google Colaboratory with 32GB of ram and

the Tensor Processing Unit acceleration material.

The metrics that were used to evaluate the performance of the algorithm include

the classification accuracy, precision, recall and F1-score. These metrics are

expressed by the equations below,

Accuracy =
TP+TN

TP+TN+FP+FN

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F1-score =
2.Precision .Recall
Precision+Recall

where, TP, TN, FP and FN stand for true positives, true negatives, false positives and

false negatives, respectively.

We shuffle the set and we take 33% of the set as the test set and 66% as the train

set. Then, we classify the traffic with 4 algorithms: K-Nearest Neighbors (KNN),

Decision Tree (DT), Random Forest (RF) and Neural Network (NN). We used the

python sklearn package to do our test.

For the KNN, we use only 1 neighbour with a uniform weight function. We get a

global accuracy of 99.27%; other metrics are reported Table 2.

5

Table 2. Results with the K Nearest Neighbour algorithm

KNN precision recall f1-score

attacker 0.9633 0.9972 0.9799

normal 0.9996 0.9916 0.9956

victim 0.9573 0.9988 0.9976

For the Decision Tree, we used the default parameters, which is the Gini criterion

for measuring the quality of a split and maximum expansion of nodes. We already

obtained a global accuracy of 99.89%; other performance metrics are given Table 3.

Table 3. results with the Decision Tree algorithm

DT precision recall f1-score

attacker 0.9956 0.9982 0.9969

normal 0.9998 0.9990 0.9994

victim 0.9946 0.9996 0.9970

For instance, we get something as shown in Fig. 1 for the beginning of the tree:

Fig. 1. First nodes of the decision tree

6

The decision tree has a depth of 31, a total of 563 nodes and 282 leaves, thus 281

tests. From this tree, it is possible to deduce, and even generate automatically, a

classification script (see the source code [20] for an example). Running this code on

an instance will predict the classification with 99.88% accuracy.

For the RF, we selected the best parameters using a grid search strategy, which

consists of computing the performance, by cross validation, on a grid of possible

parameters values, and then selecting the best estimator. We used global accuracy

as the performance metric. In particular, we used 800 trees with a max depth of 20.

We get a global accuracy of 99.95%, with the performances reported in Table 4.

Table 4. results with the Random Forest algorithm

RF precision recall f1-score

attacker 0.9982 0.9981 0.9982

normal 0.9997 0.9996 0.9997

victim 0.9981 0.9993 0.9997

An interesting outcome of the random forest is that we can extract which are the

most important features in computing the classification. The features are shown by

importance on Fig. 2.

7

Fig. 2. Relative importance of features in the CIDDS-01 dataset.

For the Neural Network, we used the multi-layer perceptron classifier. This model

optimizes the log-loss function using LBFGS or stochastic gradient descent. We used

100 neurons in the hidden layer with the rectified linear unit function for the hidden

layer activation function. The maximum iteration was set to 200. We finally obtained

a global accuracy of 99.25% ; performances metrics for the different classes are

shown Table 5.

Table 5. Results with the Neural Network algorithm

NN precision recall f1-score

attacker 0.9929 0.9938 0.9933

normal 0.9906 0.9962 0.9934

victim 0.9914 0.9883 0.9899

For the CIDDS-01 dataset and the ML-based algorithms, we obtained very high

accuracies. As mentioned in [12], for this particular dataset, balancing the classes or

8

not has a very tight influence on the accuracy, which is already so high. Anyway, by a

careful selection of the hyperparameters we recover results similar to the best RF-

WHICD in [14] (where only two classes normal/attacker were considered).

Table 6. Comparison with related work

Survey Approach Accuracy (%)

Verma and Ranga [15] 2NN 99.60

Verma and Ranga [16] DT 99.90

Tama and Rhee [17] DNN-10-FCV 99.90

Idhammad et al. [18] Entropy+RF 99.54

Abdulhammed et al. [14] RF-WHICD 99.99

Proposed KNN KNN-1 99.27

Proposed DT DT 99.89

Proposed RF RF 99.95

Proposed NN NN 99.25

5 Rules

The most accurate algorithm is the RF with 99.95% accuracy. However, it may be
difficult to embed on an IoT and it lacks interpretability. The problem of extracting
simple rules from a forest of decision trees has been considered in the machine
learning community. The goal was to find a trade-off between the modelization
power of random forests and some simple rules interpretable as in a (small) decision
tree. The Skope rules Python library [19] enables us to extract such rules from a
random forest. In our experiments, we took all the instances to train the model and
extract the rules.
For the victim class, the skope rules are:

- Bytes > 100
- Duration <= 0.03749999962747097
- Flags == ASF

And for the attacker class, the identified rules are:
- Dst Pt <= 261
- Duration <= 0.032500000670552254
- Flags == APSF

With these very simple rules, we already get a global accuracy of 86.88%.
Furthermore, by a simple inspection of data, we discovered that adding the

9

instances flagged with AR (class victim) or S (class attacker) TCP flags enables us to
improve the accuracy to 98.45%, with only 0.35% are miss classifications.

6 Conclusion

We have considered the problem of detecting anomalies or intrusions in IoT
networks. We have first presented the context and reviewed approaches in the
literature. We have focused on machine learning-based methods that can learn
directly from data and find what are the important features, without resorting to
specialized models of the network or specialized signatures. We have then selected a
dataset of network activity with several attacks, which is regularly used to develop
NIDS and as a benchmark of proposals. Using standard open-source libraries, we
have implemented and evaluated several ML-based algorithms, with performances
that are at the state-of-the-art. The sources are available and results easily
reproducible [20].

Using and implementing such solutions in an IoT network requires to consider the
possible computational overhead. For a router or network supervisor, we need a
network traffic module to capture the incoming network, and the classifiers, once
trained by a decision tree or a random forest, can probably be implemented. For the
IoT devices themselves, where consumption and computational costs can be more
severely constrained, it is possible to use a decision tree classifier (at most 20
comparison tests and a 840 lines program in Python) or even to use the very simple
rules (3 tests) derived from a random forest, with a 98.5% accuracy and a low false-
positive rate. Testing these ideas on real devices and real data is the objective of
future efforts.

References

1. “IoT under fire: Kaspersky detects more than 100 million attacks on smart devices in H1
2019.”Online]_https://www.kaspersky.com/about/press-releases/2019_iot-under-fire-
kaspersky-detects-more-than-100-million-attacks-on-smart-devices-in-h1-2019. last
accessed: 29-Oct-2019.

2. P. Newman, “IoT Report: How Internet of Things technology growth is reaching
mainstream companies and consumers,” Business Insider, 28-Jan-2019.

3. I. Butun, S. D. Morgera, and R. Sankar, “A Survey of Intrusion Detection Systems in
Wireless Sensor Networks,” IEEE Communications Surveys & Tutorials, 1 (16), 266–282,
(2014).

4. R. Doshi, N. Apthorpe, and N. Feamster, “Machine Learning DDoS Detection for Consumer
Internet of Things Devices,” In: 2018 IEEE Security and Privacy Workshops (SPW), 29–35
(2018).

5. F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine Learning in IoT Security:
Current Solutions and Future Challenges,” arXiv [cs.CR], 14-Mar-2019.

6. P. Shukla, “ML-IDS: A machine learning approach to detect wormhole attacks in Internet

https://www.kaspersky.com/about/press-releases/2019_iot-under-fire-kaspersky-detects-more-than-100-million-attacks-on-smart-devices-in-h1-2019
https://www.kaspersky.com/about/press-releases/2019_iot-under-fire-kaspersky-detects-more-than-100-million-attacks-on-smart-devices-in-h1-2019
http://paperpile.com/b/QJWWmg/vDk0
http://paperpile.com/b/QJWWmg/vDk0

10

of Things,” In: 2017 Intelligent Systems Conference (IntelliSys), 234–240 (2017)
7. J. Cañedo and A. Skjellum, “Using machine learning to secure IoT systems,” In: 2016 14th

Annual Conference on Privacy, Security and Trust (PST), pp. 219–222 (2016)
8. N. Nesa, T. Ghosh, and I. Banerjee, “Non-parametric sequence-based learning approach

for outlier detection in IoT,” Future Gener. Comput. Syst. (82), 412–421, (2018).
9. E. Viegas, A. Santin, L. Oliveira, A. França, R. Jasinski, and V. Pedroni, “A reliable and

energy-efficient classifier combination scheme for intrusion detection in embedded
systems,” Comput. Secur., (78), 16–32, (2018).

10. H. H. Pajouh, R. Javidan, R. Khayami, D. Ali, and K.-K. R. Choo, “A two-layer dimension
reduction and two-tier classification model for anomaly-based intrusion detection in IoT
backbone networks,” IEEE Transactions on Emerging Topics in Computing, 2(7), 314 - 323,
(2019).

11. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP
99 data set,” In: 2009 IEEE Symposium on Computational Intelligence for Security and
Defense Applications, 1–6 (2009).

12. M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of network-
based intrusion detection data sets,” Comput. Secur., (86), 147–167 (2019).

13. M. Ring, S. Wunderlich, D. Gruedl, D. Landes, and A. Hotho, “Technical Report CIDDS-001
data set,” (2017).

14. R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. AbuMallouh, “Deep and Machine
Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network
Traffic,” IEEE Sensors Letters, 1(3), 1–4, (2019).

15. A. Verma and V. Ranga, “On evaluation of network intrusion detection systems: Statistical
analysis of CIDDS-001 dataset using machine learning techniques,” Pertanika J. Sci.
Technol., 3(26), 1307-1322, (2018).

16. A. Verma and V. Ranga, “Statistical analysis of CIDDS-001 dataset for Network Intrusion
Detection Systems using Distance-based Machine Learning,” Procedia Comput. Sci., (125),
709–716 (2018).

17. B. A. Tama and K.-H. Rhee, “Attack classification analysis of IoT network via deep learning
approach,” Research Briefs on Information & Communication Technology Evolution
(ReBICTE), (3), 1–9 (2017).

18. M. Idhammad, K. Afdel, and M. Belouch, “Detection System of HTTP DDoS Attacks in a
Cloud Environment Based on Information Theoretic Entropy and Random Forest,”
Security and Communication Networks, (2018).

19. https://github.com/scikit-learn-contrib/skope-rules
20. V. Bonandrini et al., https://github.com/VasgoTheTotoroo/IDS_IoT

