
HAL Id: hal-02089260
https://hal.science/hal-02089260

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Task Descriptions with Explicit Representation of
Allocation of Functions, Authority and Responsibility to

Design and Assess Automation
Elodie Bouzekri, Alexandre Canny, Célia Martinie, Philippe Palanque,

Christine Gris

To cite this version:
Elodie Bouzekri, Alexandre Canny, Célia Martinie, Philippe Palanque, Christine Gris. Using Task
Descriptions with Explicit Representation of Allocation of Functions, Authority and Responsibility to
Design and Assess Automation. 5th IFIP Working Conference on Human Work Interaction Design
(HWID), Aug 2018, Espoo, Finland. pp.36-56, �10.1007/978-3-030-05297-3_3�. �hal-02089260�

https://hal.science/hal-02089260
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22696

Official URL

DOI : https://doi.org/10.1007/978-3-030-05297-3_3

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bouzekri, Elodie and Canny, Alexandre and
Martinie De Almeida, Celia and Palanque, Philippe and Gris,
Christine Using Task Descriptions with Explicit Representation of
Allocation of Functions, Authority and Responsibility to Design and
Assess Automation. (2019) In: IFIP WG 13.6 Working Conference
Human Work Interaction Design (HWID 2018), 20 August 2018 -
21 August 2018 (Espoo, Finland).

Using Task Descriptions with Explicit Representation of

Allocation of Functions, Authority and Responsibility

to Design and Assess Automation

Elodie Bouzekri1, Alexandre Canny1, Célia Martinie1, Philippe Palanque1,3

and Christine Gris2

1 ICS-IRIT, University of Toulouse 3, Toulouse, France
2 Airbus Operations SAS, Blagnac, France

3 Technical University Eindhoven, Department of Industrial Design Eindhoven Netherlands

{bouzekri, canny, martinie, palanque}@irit.fr

christine.gris@airbus.com

Abstract. Automation can be considered as a design alternative that brings the

benefits of reducing the potential for human error and of increasing performance.

However, badly designed automations, of which some of them are called auto-

mation surprises, can have a very negative impact on the overall performance of

the couple operator/system. Automation design requires the definition of three

specific aspects defining the relationship between the user and the system: allo-

cation of functions, authority and responsibility. While these abstract concepts

are usually well understood at a high level of abstraction, their integration within

a development process is cumbersome. This paper presents an approach based on

task models to explicitly handle those concepts. We show how such concepts can

be integrated in a task modeling notation and illustrate on a case study how this

notation can be used to describe design alternatives with different allocation of

functions, authority and responsibility between the user and the system. Exploit-

ing the case study, we demonstrate that embedding explicitly these concepts in a

notation supports analysis and assessment of automation designs.

Keywords: Automation Design and Assessment, Task Modeling, allocation of

functions, authority, responsibility.

1 Introduction

Currently, automation is one of the main means for supporting operators using systems

that feature increasing complexity. Automation makes it possible for designers to trans-

fer the burden from operators to a system by allocating to the system tasks that were

previously performed by the operator. Automation is defined as “the technique, method

or system of operating or controlling process by highly automatic means, as by elec-

tronic devices, reducing human intervention to a minimum” [9]. In this definition, the

concept of control is highlighted in addition to the concept of allocating functions to

the system. This concept of control is related to the authority the human or the system

may have on the triggering of an operation or of a process. Another term used to define

automated systems is “autonomy”. This term refers to the independence from outside

2

control of the human or system entity (i.e. self-directedness), whereas automation refers

to an entity that will do only what it is programmed to do without having any choice

[26]. This implies that the automated system may have a certain level of independence

and thus be responsible for the outcome of the execution of the triggered functions. As

both the operator and the automated system may have authority for triggering functions,

then both the operator and the designer of the automated system may be responsible for

the outcome of the triggering of a function. In addition to automation and autonomy,

Bradshaw et al [6] highlight another concept that is related to the self-sufficiency of the

entity (defined as the French word for autonomous “autonome”) and that is the ability

to take care of itself. An entity with a high level of self-sufficiency should be given the

authority on the functions that are related to the acquisition of its required resources.

Allocation of functions is a pillar of automation design. Parasuraman et al. have defined

a classification of different Levels of Automation (LoA) [22]. These LoA have been

extensively used for assessing automation levels of command and control systems such

as Air Traffic Management applications, aircraft cockpits or satellite ground segments.

As none of these systems reach level 10 (full automation), they are usually called hu-

man in-the-loop command and control systems of partly autonomous systems [18]. Be-

yond that, these LoA were also used as a design driver for research and industry projects

having as a target higher automation levels1. However, we argue that authority and

responsibility should also be taken into account at design time.

The three main aspects of automation at design time thus lay in describing what func-

tions/tasks are allocated to the system and the human (allocation of functions), who is

allowed to perform what functions/tasks (authority), and who is responsible for the out-

come of the execution of the functions/tasks (responsibility). Because increasing/de-

creasing automation can have a huge impact on human performance, workload, team

size and human error, there is a need for methods and tools to support the assessment

of the impact of automation design (including the positioning with respect to the LoAs)

in early stages of the development process. In this article, we highlight the benefits of

having a notation making it possible to describe (with models), in a complete and un-

ambiguous way, allocation of functions, authority and responsibility. We argue that a

dedicated notation provides support during various stages of the design and develop-

ment of an autonomous or partly autonomous interactive system. The proposed notation

makes these abstract concepts concrete enough to provide means for the independent

analysis of each of them.

Next section (section 2) identifies what information is needed, at design time, to take

into account the allocation of functions, authority and responsibility and defines those

concepts. Section 3 presents a qualitative analysis of the classification of the Levels of

Automation according to the concepts of allocation of functions, authority and respon-

sibility. These two sections highlight the fact that there is no available technique for

describing the allocation of functions, authority and responsibility during the design of

partly-autonomous systems. Section 4 presents the elements of notation for task models

to provide support for the identification and representation of allocation of functions,

1 See page 5: 17 projects and 13 PhD funded by SESAR Joint Undertaking towards higher auto-

mation levels in aviation http://www.sesarju.eu/sites/default/files/docu-

ments/events/sesar2020-20150504/3_SESAR2020_ER_Info_Day_FV_David_Bowen.pdf

3

authority and responsibility. Section 5 illustrates these elements of notation with the

example of the Game of 15.

2 The Concepts of Allocation of Functions, Authority and

Responsibility and How to Use them for Automation Design

This section presents the results of a literature review on approaches for designing au-

tomation that take into account allocation of functions, authority and responsibility (re-

ferred to as AFAR in the remainder of the paper). It first highlights the information that

needs to be taken into account when dealing with the allocation of functions, authority

and responsibility. It also highlights that most of the related work focusses on the tech-

niques for dealing with the allocation of functions, and does not provide precise guid-

ance for taking into account authority and responsibility.

2.1 Allocation of Functions

The concept of Allocation of Functions refers to “determining the distribution of work

between humans and machines early in the design process” [27]. Human work is the

set of perceptive, cognitive, motor and input interactive tasks that the user should per-

form to reach her/his goal. System work is the set of algorithmic, input and output func-

tions that the system should perform to support user goal. The analysis of the allocation

of functions is necessary to identify the optimal distribution of both functions and tasks

between a partly-autonomous system and a user. The allocation of functions is also

central to the design of automation because it provides support to migrate user activities

to be performed by the system or to migrate system functions to be performed by the

user. Indeed, according to [28], not enough functions allocated to user will lead to un-

derload and boredom and thus decreased performance while too many functions will

lead to cognitive, perceptive or motoric overload and increase stress and likelihood of

user errors. The output of the allocation of functions is the description of the sets of

tasks that the user should perform to reach her/his goal and the description of the sets

of functions that the system should perform to support user goal. This implies that the

system designer has to identify all the functions that have to be performed by the system

together with all the tasks that have to be performed by the user.

2.2 Authority

The concept of Authority refers to “the power or right to give orders, make decisions,

and enforce obedience” according to [21]. When dealing with the design of automation,

Flemisch et al [11] propose to refine this definition to “what the actor is allowed to do

or not to do”. Taking into account authority at design time requires analyzing how the

authority can be shared between the user and the system, which possibly involves al-

ternating between the user and the system over time. For instance, allowing the system

to trigger a function on its own increases the overall system authority and decreases the

one of the user. Thus, the goal of the design and analysis of the allocation of authority

is to identify the optimal distribution of authority between an autonomous or partly-

autonomous system and a user which heavily depends on the type of system considered

4

(e.g. safety critical systems). The output of the authority distribution is the description

of what the system and the user are allowed to do (and in particular, what functions the

system will be authorized to perform and to trigger – also called initiative). This implies

that the system designer has to identify and describe both the tasks that the user is al-

lowed to perform and the functions that the system is allowed to perform.

Going back to the definition of authority presented above, “the right to give orders”

and “the right to enforce obedience” are already taken into account (for instance in a

task description) when describing the functions and tasks that the system and the human

are allowed to perform. However, in conformance with [14], we consider that the iden-

tification of “the right to make decisions” has to be done explicitly because there are

complex relationships between decision-making authority and the allocation of func-

tions and tasks between the system and the human.

2.3 Responsibility

The concept of Responsibility refers to the fact that an actor should be accountable for

the result of an action [11]. The allocation of responsibilities (between the user and the

system) must make explicit the outcomes that are relevant and who (the user or the

system) influences these outcomes. The purpose of making responsibilities explicit is

to be able to support the identification of the actor who has been at the root cause of an

unwanted or unexpected outcome. The output of the allocation of responsibilities con-

sists in a list of both all expected and all actual outcomes when an activity is performed.

The comparison between actual outcomes and expected outcomes makes it possible to

identify deviations (that could be errors on the user side or failures on the system side).

2.4 Related Work Addressing Allocation of Functions, Authority and

Responsibility

Existing approaches dealing with automation design usually focus on identifying func-

tions that should be allocated to either the operator or the system. These approaches

provide support for the identification of which tasks are good candidate for automation

and which ones should remain performed by the operator [4], [8], [10], [23] and [27].

All of these approaches use task description techniques and provide support for describ-

ing the possible workflows between user tasks and system functions. In addition to the

description of the possible workflows between user tasks and system functions, the

concept of orchestration, as defined in the software engineering and business process

modeling (BPM) literature [20], provides supports to describe the control over the pos-

sible workflows between user tasks and system functions. Orchestration models, usu-

ally represented with UML diagrams or BPM models, thus provide support to describe

the initialization, the changes and the finalization between the workflows of the user

and the system. Rovatsos et al. [24] highlighted the benefits of having an “orchestration

workflow layer” in addition to descriptions of user tasks and system functions when

developing systems that are able to adapt to different user behaviors.

Beyond analyzing allocation of functions and possible workflows at design time,

Loer et al. [16] propose a model-checking technique to verify the relevance of all pos-

sible temporal scheduling (workflows) of adaptive automation.

5

We have found limited related work dealing with design approaches that provide

support for taking into account authority sharing and responsibility issues. Gombolay

et al. [14] discusses the observations they have made about decision-making authority

and responsibility sharing between human and robots from the point of view of reaching

a global human-robot optimized performance. Flemisch et al. [11] as well as Miller and

Parasuraman [19] proposed a conceptual framework that highlight the importance of

taking into account authority and responsibility at design time. Boy [5] proposed a con-

ceptual model to support the analysis of authority sharing amongst several humans and

systems. Cummings and Bruni [7] proposed to extend Parasuraman information pro-

cessing model by adding a decision making component. However, none of this work

provide precise techniques or even guidance to apply to describe or design the alloca-

tion of authority and/or responsibility between a system and its user.

3 Levels of Automation and Allocation of Functions, Authority

and Responsibility (AFAR)

This section aims at discussing how the classification of the Levels of Automation, as

defined by Parasuraman et al [22], provides support for the design of the allocation of

functions, authority when developing partly-autonomous systems. Table 1 presents the

qualitative analysis of the Levels of Automation according to the allocation of func-

tions, authority and responsibility (AFAR). The first column presents the Levels of Au-

tomation (LoA) as defined in [22], ranging from the highest automation (Level 10),

where the “computer decides everything, acts autonomously, ignoring the human”, to

the lowest automation (Level 1), where “computer offers no assistance: human must

take all decisions and actions”. The second column presents the allocation of functions,

authority and responsibility according to the description of the LoA.

Table 1. Levels Of Automation (LoA) from [22] and its interpretation using AFAR

Description of LoA as in [22] Interpretation in terms of Allocation of Functions, Author-

ity and Responsibility

10. The computer decides every-

thing, acts autonomously, ignoring

the human,

AF: All to computer

A: All to computer

R: All to computer

9. informs the human only if it, the

computer, decides to,

AF: All to computer but human might perceive the information

presented

A: All to computer

R: All to computer

8. informs the human only if

asked, or

AF: All to computer but human might ask and perceive the infor-

mation presented

A: All to computer but human can ask to be informed

R: All to computer

7. executes automatically, then

necessarily informs the human,

and

AF: All to computer but human can perceive the information pre-

sented

A: All to computer

6

R: All to computer

6. allows the human a restricted

time to veto before automatic exe-

cution, or

AF: All to computer but human can perceive how to veto and trig-

ger veto

A: Mostly to computer but human can take authority over computer

using veto

R: To computer if no veto and to human if veto

5. executes that suggestion if the

human approves, or

AF: All to computer but human can perceive suggestion as well as

how to approve and to trigger approval/denial

A: Mostly to computer but human can take authority by rejecting

suggestion

R: Shared if approval and to human if not approved

4. suggests one alternative, AF: All to human but computer must compute and present one al-

ternative

A: Mostly to human, computer can only provide suggestion

R: Shared if human selects one element of the options presented

3. narrows the selection down to a

few, or

AF: All to human but computer must filter out and present options

A: Mostly to human, computer can only filter out options

R: Shared if human selects one element of the options presented

2. The computer offers a complete

set of decision/action alternatives,

or

AF: All to human but computer must present the complete set of

options

A: All to human

R: All to human

1. The computer offers no assis-

tance: human must take all deci-

sions and actions.

AF: All to human but computer might allow human to provide in-

put

A: All to human

R: All to human

Table 1 shows that going higher in automation levels affects Authority, sometimes

Responsibility, or Allocation of Functions but that it is not done in a consistent way.

Indeed, one could have expected that going from bottom to top AF, A and R would

move progressively from user to computer. However, at LoA 7, the authority is already

all to the computer, while it is shared with the human at LoA 8, and is again all to the

computer at LoA 9. The same holds for the allocation of functions as, for instance, the

user has to perform more actions at LoA 8 (perceive and ask for information) than at

LoA 7 (where the user can only perceive information). In addition, even though most

of the levels of automation concern partly-autonomous systems where both user and

system are involved, they do not provide any information about the user interface and

its associated interaction techniques. This is an important limitation of that LoA frame-

work as partly-autonomous systems may embed complex UIs and that the tasks of in-

teracting with this type of systems should be part of the description of the allocation of

functions. Finally, this classification represents only abstract information about the al-

location of functions and tasks. It is not sufficient when designing a partly-autonomous

system, because quantitative data about user tasks and system functions, meaning pre-

cise descriptions of tasks and functions, is required to specify the behavior of the sys-

tem, its UI and the operations that are allowed with it.

7

We choose the Parasuraman LoA [22] as an example because these LoA are widely

used in the industry. Nonetheless, the same qualitative analysis can be done on other

existing classifications of LoA. The interested reader can find more information in the

Vagia et al [26] literature review of proposed LoA. The Table 2 presents the results of

the qualitative analysis of the levels of driving automation according to the allocation

of functions, authority and responsibility (AFAR). This example focuses on the level 2

of the 6 levels of driving automation proposed by the standard SAE J3016 [15] for the

design of automated cars.

Table 2. Levels of driving automation from [15] and its interpretation using AFAR

Description of level of driving automation

as in [15]

Interpretation in terms of Allocation of

Functions, Authority and Responsibility
2. Partial Driving Automation

Human Driver (at all times):

Performs the remainder of the Dynamic

Driving Task not performed by the driving

automation system

Supervises the driving automation system

and intervenes as necessary to maintain safe
operation of the vehicle

Determines whether/when engagement and
disengagement of the driving automation

system is appropriate

Immediately performs the entire Dynamic
Driving Task whenever required or desired

Driving Automation System (while engaged):

Performs part of the Dynamic Driving Task
by executing both the lateral and the longitu-

dinal vehicle motion control subtasks

Disengages immediately upon driver request

AF: Mostly to the human driver, the human driver

can delegate the dynamic driving function to the
driving automation system.

A: Mostly to the human driver, the driving automa-

tion system can trigger both the lateral and the lon-
gitudinal vehicle motion control subtasks if the hu-

man driver engaged the driving automation system.

R: All to the human driver, except for the lateral
and longitudinal movements if the human driver

engaged the driving automation system.

At this level of driving automation, all the functions are allocated to the human

driver. However, the human driver can decide to delegate lateral and longitudinal mo-

tion control subtasks to the driving automation system. Then, the human driver has all

the authority and responsibility except if the human driver decides to engage the driving

automation system. In the end, this classification represents only abstract information

about the responsibility and authority distribution between both entities.

Next section presents the elements of notation that aim at fulfilling the need of pre-

cise description of tasks and functions for the specification of the system.

4 Representing Authority, Responsibility and Allocation of

Functions in Task models

This section presents the task modeling elements of notation that aim at providing sup-

port for the explicit representation of allocation of functions, authority and responsibil-

ity. These elements of notations are demonstrated on the HAMSTERS notation but they

could be added to other procedural descriptions of user tasks.

8

4.1 The Tool Supported Notation HAMSTERS

HAMSTERS (Human – centered Assessment and Modeling to Support Task Engineer-

ing for Resilient Systems) is a tool-supported task modeling notation for representing

human activities in a hierarchical and structured way. The HAMSTERS notation and

its eponym tool have initially been developed to provide support for ensuring con-

sistency, coherence and conformity between user tasks and interactive systems at model

level [1]. HAMSTERS embeds the common ground of task modelling such as hierar-

chical description of tasks, temporal ordering, refinement of tasks per types, manipu-

lated data and structuring mechanisms [17]. This common ground is used to describe

user tasks and system functions, and is thus used to describe the task and function allo-

cation between user and system.

4.2 Allocation of Functions

The analysis of allocation of functions, authority, and responsibility requires at least

one task model per role. The concept of role in HAMSTERS refers to a set of goals and

tasks (described in one or several task models) that can be attributed to one actor. An

actor is defined by an entity that is capable of performing a set of tasks and that has

several characteristics such as physical properties, level of knowledge, experience….

Examples of actor can be a player (user playing a game) or a software application on a

computer (as shown in Fig. 1b)). In order to show the allocation of functions between

the user and the autonomous part of the system, we propose to describe autonomous

system functions in HAMSTERS as well. To distinguish user tasks from autonomous

system functions in tasks models, we propose to describe autonomous system functions

associated to corresponding dedicated roles in HAMSTERS. Fig. 1a) shows a typical

example of project for studying automation in a mono-user computer game. The role

called “Player as challenger” and the role called “Player as leader” contain respectively

all the task models describing how the user can play as a challenger and as a leader.

The role called “Player as game configuration manager” contain the task models de-

scribing how the user may configure the game if s/he is in charge of it. The role called

“Software application as challenger” and the role called “Software application as

leader” contain respectively all the task models describing how the software application

can play as a challenger and as a leader. The role called “Software application as game

configuration manager” contains the task models describing how the software applica-

tion can perform tasks to configure the game (such as choosing the leader). The role

“Software application as configuration maker” contains tasks models describing how

the software application can provide support to the user to configure the game (as for

example its tasks to record the winner for each game).

a) b)

9

Fig. 1. a) the six mandatory roles for describing automation and b) example of two actors

It is important to note the difference with standard task modeling practices where a

user task model integrates in a single model an interleaving of user behavior and sys-

tem’s response to user behavior. In our case, in order to describe explicitly user tasks

and autonomous system functions, we require the creation of several roles and at least

one associated task models for each role. This means that an autonomous system model

(belongs to the one of the roles that can be attributed to the software application) is only

made of tasks belonging to the system task category, while the user model (here belongs

to one the roles that can be attributed to the player) can embed any type of task type but

system tasks. However, due to this separation of concerns, it is impossible to describe

interleaving of actions between user and system inside those models (as it is usually

done in task modelling notations). For this reason, we have added a new event-based

mechanism dedicated to the explicit description of interleaving of actions between the

user and the system. Fig. 2 (resp. Fig. 3) presents an example of software application

task model (resp. player task model). These task models contain description of the

events (grey boxes) that are produced (an outgoing arrow from a task to an event) in

one task model and that trigger tasks (an incoming arrow from an event to a task) in the

other task model.

Fig. 2. Task model describing the software application behavior related to the task model of the

player (see Fig. 3) for choosing the leader

For example, in the software application task model depicted in Fig. 2, the output

interactive system task “Display leader choices” produces the event “Event: Choices

displayed”. This event triggers the execution of the visual perception task “See possible

choices” in the player task model depicted in Fig. 3. Still in the player task model in

Fig. 3, once the player has chosen who will be the leader (cognitive tasks under the

temporal ordering operator choice “[]”), the player performs the selection (interactive

input task “Select the leader”). This interactive input task produces an event “Event:

Selection performed”), which is described in the software application task model (de-

picted in Fig. 2) as triggering the system task “Process selection”.

10

Fig. 3. Task model describing the behavior of the player to choose who (between software ap-

plication and player) is the leader – this model is triggered by the model in Fig. 2

The description of the orchestration of the workflows of the user tasks and system

functions is described in an orchestration model. The elements of notation used to de-

scribe the orchestration are the same than the HAMSTERS elements of notation with

adding two icons. The first one is the icon “conductor” (depicted in Fig. 4a)).

a) b)

Fig. 4. a) Symbol of the root node of a model describing how a set of task models is orches-

trated, and b) Representation of an entire task model that is used inside an orchestration model

The second one, is the icon “Model” (depicted in Fig. 4b)), that is to be used in an

orchestration model to represent a task model that can be started. In the orchestration

model the temporal ordering of task models is represented using the standard operators

in HAMSTERS. Comparing to swim lines with one possible sequence in BPM nota-

tions, the temporal ordering operators provide support for describing several distinct

possible orchestrations. The orchestration model is used to describe the initialization of

the workflows (which tasks and functions are started on the user side and on the system

side), the possible dynamic changes (for example to represent that a function that is

delegated to the system but that it could be re-assigned to the user) and the final com-

pletion of the workflows of the user and the system (what are the last user tasks and

system functions).

4.3 Authority

The description of Authority can be either procedural or declarative. The procedural

description of tasks aims at making what the system is allowed to do and what the user

is allowed to do. It provides support to describe how authority goes from one role to

11

the other one. In HAMSTERS this is represented using the event-based description of

the triggering of tasks in another model. This view describes the switching of authority

between the user and the system while the tasks are executing.

The declarative description aims at explicitly highlighting which tasks represent the

right to make decisions, in order to facilitate the sharing of the decision-making. The

icon “crown” (depicted in Fig. 5 a)) provides support to describe a task for which the

user or the system has the decision-making authority. Only the tasks of type “abstract”

may be represented with the symbol “authority” (depicted in Fig. 5 b)). This is because

the user or the system can have the authority on a decision-making task. The refinement

of the task and its associated set of actions is independent from the fact of having deci-

sion-making authority on it.

a) b)

Fig. 5. a) Symbol representing the authority b) Authority symbol associated to a task. The sym-

bol is displayed when the property “authority” of a task is set to true.

Within this context of sharing authority, it is important to note that operators can per-

form actions by mistake or intentionally by violation. In the context of task descriptions,

only nominal actions are represented as errors and deviations should be made explicit

in other description [13]. Each task described in a task model means that the operator

in charge of it is allowed to perform it.

4.4 Responsibility

The description of Responsibility can be either procedural or declarative. The pro-

cedural view is the description of the flow between the task and the outcome of the task.

This description consists in a flow (arrow) between a task and information or objects

describing the expected and actual results. The declarative view is the explicit repre-

sentation of the symbol of “responsibility” in the relevant tasks, information and ob-

jects. The expected and actual results produced by a task can be represented with the

data types “Information” (depicted in Fig. 6a)) when the result is produced by the user,

or with the data type “Object (depicted in Fig. 6b)) when the result is produced by the

system.

a) b)

Fig. 6. Elements of the notation for representing responsibilities.

The tasks that set the expected results and/or have an impact on the actual results are

tagged with the icon “scale”. The icon “scale” (depicted in Fig. 7a)) is displayed next

to the user or system task (depicted in Fig. 7b)). This icon represents that the user or

the system is responsible for setting the expected results and/or for having an impact

on the actual result.

a) b)

12

Fig. 7. a) Symbol representing the responsibility b) Responsibility symbol associated to a task.

During the task modeling process, the task that produces the expected result has to

be tagged with the symbol « responsibility ». This symbol is displayed when the prop-

erty “responsibility” of a task is set to true. These tasks have also to be connected to the

information or object that describes the expected result, thanks to an arrow going from

the task to the information or object describing the expected result. In addition, all the

tasks that have an impact on the actual result have to be tagged with the symbol « re-

sponsibility ». These tasks have also to be connected to the information or object that

describes the actual result, thanks to an arrow going from the task to the information or

object describing the actual result.

5 Illustrative Example: The Game of Fifteen

This section presents how the HAMSTERS notation supports the description of the

allocation of functions, authority and responsibility through a simple case study.

5.1 Game of Fifteen: Main Principles and Rules

The Game of Fifteen is a two players game in which each player chooses and selects,

in turn, a number (graphically represented as a token) ranging from 1 to 9. The first

player who gets a combination of three numbers (amongst the set of tokens that s/he

has selected) for which the sum is exactly 15 wins the game. No explicit rule defines

who plays first, thus requiring players to reach an agreement. In the computerized ver-

sion of the game, the software application on computer may act as a referee. In that

case, it could declare the winner as soon as one of the players’ set of tokens matches

the winning condition. An example of a user interface for a computerized version of

this game is shown in Fig. 8.

Fig. 8. An example of User Interface for the Game of Fifteen.

5.2 User Interfaces for the Game of 15 and their Associated Levels of

Automation

Table 3 presents several examples of user interface matching the definitions of levels

of automation for the player task of selecting a token (number). We observe that at level

1 (LoA 1, Table 3), there is no information displayed regarding available or selected

tokens. The player must memorize the already selected tokens before picking up an

available one. Thus, at LoA 1, AFAR are all to human but the computer allows the

human to provide inputs. At the highest level of automation (LoA 10, Table 3), there

13

is no information displayed regarding available tokens either since the computer ig-

nores the human for the fully automated task. Thus, AFAR are all to computer. From

LoA 2 to LoA 6 (UI for LoA 2 and 5 are presented in Table 3) the player remains active

in the decision process and is explicitly informed of what is going on via the User In-

terface. However, this UI evolves from “offering complete freedom” (at LoA 1) to

“choose one token” (LoA 2). In those cases AFAR are all to human and the computer

must present the entire set of options. At LoA 5, AFAR moves towards computer as the

user must consider a suggestion made by the system. At this level (LoA 5), we observe

the Allocation of Functions is all to computer but the human can perceive the com-

puter’s suggestion using the dialog window containing trigger for approval (“Pick 5”)

and denial (“View another one”). Authority is mostly to computer since it makes the

suggestion, even though the human can take it back by denying the suggestion. Thus,

responsibility is shared between human (if case of denial) and computer (if approval is

granted).

Table 3. User interfaces matching the definition of Level Of Automation for the game of 15.

LoA Definition [19] Example of GUI supporting the LoA

10

The computer decides every-

thing, acts autonomously, ig-

noring the human.

9

[The computer] informs the

human only if it, the com-

puter, decides to.

6,7, 8 Not presented due to space constraints

5

[The computer] executes that

suggestion [from LoA 4] if

the human approves.

3, 4 Not presented due to space constraints

2

The computer offers a com-

plete set of decision/action

alternatives.

See Fig. 8

1

The computer offers no as-

sistance: human must take all

decisions and actions.

5.3 Modeling of Allocation of Functions, Authority, and Responsibility and

with HAMSTERS

This section presents the description of the player tasks and of the software application

tasks corresponding to different versions of the Game of 15. It aims at illustrating how

14

the proposed notation provides support for the description and the analysis of the as-

pects related to AFAR during the design phases of a partly autonomous system. Due to

space constraint, we have selected a set of representative models to illustrate all the

proposed elements of notation.

The allocation of functions between the player and the software application is de-

scribed in player task models (one of them is depicted in Fig. 10) and software appli-

cation task models (one of them is depicted in Fig. 11). The orchestration model (de-

picted in Fig. 9) describes the possible orderings between the workflows of the software

application tasks models and player tasks models. In this orchestration model, the

player is in charge to choose the leader (represented by the model “Player as game

configuration manager – Choose the leader” task model under the concurrent “|||” op-

erator). Fig. 3 depicts the user tasks of this model. Concurrently, the system provides a

mean to configure the player choice of the leader (represented by the model “Software

application as configuration maker – Configure the leader” task model with concurrent

operator). Fig. 2 depicts the player tasks of this model. The model “Software applica-

tion as configuration maker – Configure the leader” produces the object “Leader” (sys-

tem side) and the model “Player as game configuration manager - Choose the leader”

produces the information “Leader” (user side). Both elements of data contain the refer-

ence to the name of leader of the game. Then, if the user is the leader (left branch under

the choice “[]” operator in Fig. 9), s/he starts to play as the leader (condition on the

information “leader”) and the software application on computer starts to play as the

challenger (condition on the object “leader”). Alternatively, if the player is the chal-

lenger (right branch under the choice “[]” operator in Fig. 9), s/he starts to play as the

challenger (condition on the information “leader”) and the software application on com-

puter starts to play as the leader (condition on the object “leader”). Finally, the software

application is in charge to store the winner at the end of the game (last model “Software

application as configuration maker – Store the winner” on the right under the sequence

“>>” operator).

Fig. 9. Orchestration model of the computerized version of the Game of Fifteen.

Fig. 10 depicts the software application task model of the software application

tasks that have to be performed to play a turn of the version of the Game of 15 for the

LoA 5. In order to process user turn (abstract task “Process user turn (level 5)” in Fig.

15

10), the system sequentially (sequence “>>” operator): displays tokens played by both

the players and a suggested token for the user (interactive output tasks “Display tokens

played by user” and “Display tokens played by system”). Then, the system suggests

and displays a token iteratively (abstract iterative task “Suggest tokens”) on user de-

mand until the user confirms one of the suggested token (system task “Process user

confirmation” under disable “[>” operator). The abstract iterative task “Suggest tokens”

consists in the following actions. The system has to suggest a token that have to help

the user to win (system task “Suggest a token” that accesses to the declarative

knowledge “The token suggested have to help the user to win”). Then, the system dis-

plays the suggested token through a pop-up window (software application information

“Suggested pick pop-up”) and triggers an event (“Suggested token is displayed” event).

The system cannot execute its following tasks (“Suggest a token” and “Process user

confirmation” system tasks have an input event) until one of the two user events are

triggered: user clicks on “View another one” button (interactive input task “User clicks

on “View another one” button” in Fig. 11) or user clicks on “Pick [number] button”

(interactive input task “User clicks on “Pick [number]” button” in Fig. 11).

Fig. 10. Task model of the software application task “Process user turn” (for LoA 5).

Fig. 11 depicts the player task model of the tasks that have to be performed by the

player to play a turn of the version of the Game of 15 for the LoA 5. For this LoA, the

player supervises the choice of token (abstract task “Supervise token choice” task in

Fig. 11). In that figure, the player analyzes and reads the token suggested by the system

until s/he confirm one (iterative abstract “Analyze and read suggestion” under a disable

“[>” operator with abstract task “Confirm suggested token”). At any time, the player

can think about the token to play during the supervision (iterative and optional cognitive

task “Think about the token to play” under the concurrent “|||” operator). More pre-

cisely, the event “Suggested token is displayed” that is triggered by the system allows

the user to see the suggested token (motoric sight task “See suggested token”) and to

memorize it (cognitive task “Memorize the suggested token”). In the same way, the

16

player can read the tokens played by the system and by her or him in an independent

order (order independent “|=|” operator between user tasks “Know suggested tokens”

and “Know tokens played by the system”). Then, the player analyses the suggested

token and she or he decides to select the suggested token or to ask for another one

(sequence of cognitive decision task, motor task and user input task).

Fig. 11. Task model of the player task “Supervise the token choice” (LoA 5).

The input and output events between user tasks and system tasks describe the proce-

dural change of authority between the player and the software application. An output

event from a system task in conjunction with an input of this event to a user task de-

scribes a switch of authority from the system to the user. An output event from an in-

teractive input task in conjunction with and input of this event to a system task describes

a switch of authority from the player to the software application. However, even if one

of the roles has the authority on the other for a task, the other can execute other concur-

rent task over which s/he has the authority like thinking about the token to play (cogni-

tive task “Thinking about the token to play” in Fig. 11). In this version of the Game of

15, there is one task related to decision-making authority, it is the task “Choose a

leader” and the player has the authority on it (as depicted in Fig. 2). The explicit repre-

sentation of the authority on this decision task provides support for discussing about

what would be the impact if assigned to the software application, or if transferred from

the player to the software application at runtime. When the player confirms a suggested

token, the software application has the responsibility to process correctly the suggested

17

token confirmed by the player (system task “Process user confirmation” in Fig. 10) and

the player has the responsibility to confirm the correct suggested token according to his

or her expected result (“Click on “Pick [number] button” input task in Fig. 11). Both

tasks have an impact on the outcome of the game (connection between these tasks and

the corresponding objects and information in Fig. 10 and in Fig. 11). The explicit rep-

resentation of responsibility by the description of the expected and actual outcome of

these tasks provide support for arguing about the actions that should be taken if the user

or the system tasks fail in reaching the expected outcome (e.g. modifying the display

size of the tokens and or buttons if the user do not “Click on “Pick [number] button”).

6 Future Work

We have presented extensions to a task-modelling notation and tool in order to provide

support to the explicit description of allocation of functions, authority and responsibil-

ity. As a future work, we plan to propose an approach for the qualitative analysis of

allocation of functions, authority and responsibility based on task models. For example,

the systematic analysis of the required cognitive tasks described in the task models as

well as the information manipulated by the human for different allocation of functions,

authority and responsibility distributions will aim at providing insights on the impact

of these choices of allocation on the cognitive workload. Another example of analysis

that would be part of the approach is the analysis of motor tasks described in in the task

models to determine the impact on the effort for example. Furthermore, the analysis of

the number of tasks and the types of tasks allocated to the human can provide a model-

based analysis of some user experience aspects. This type of analysis can help to pre-

vent design solutions where the human can be bored or complacent in case of high-

level of automation. This approach will aim at providing a comparison between differ-

ent distributions of allocations of functions, authority and responsibility.

Another possible future work is to introduce the description of possible errors in the

task models (this technique is already supported by HAMSTERS notation and tool [13])

to provide support to analyse how to give back the authority to the human in case of

automation failure.

7 Conclusion

Automation has been studied for many years and even though metaphors [12] or frame-

works [22] have been proposed, the description of the allocation of functions, authority

and responsibility between the user and the system is not supported by notations and

tools. However, when designing automation, a precise description of those elements are

required in order to:

1) identify and specify the partly-autonomous system functions and the user tasks,

2) identify and reason about the actions the system is allowed to trigger and the

decisions the system is allowed to take, (the similar holds on the user side),

3) understand mutual responsibility (and liability) in case the cooperation be-

tween the user and the partly-autonomous system does not produce the expected

outcomes.

18

Existing approaches for the design of automation mainly focus on the allocation of

functions and deal with authority and responsibility only at a high abstraction level.

This does not provide support for reasoning about the quality of a given allocation of

authority and responsibility and makes the task of engineering of partly-autonomous

system cumbersome, leaving design decisions in the hands of the programmers. This

article has argued that the analysis of the allocation of functions must go beyond the

analysis of the sharing of the tasks of high-level types (decision, suggestions, com-

mands as proposed in [22]) and that fine-grain descriptions of user and system actions

are required. This article also argued that the allocation of authority and responsibility

has to be taken into account at the same fine-grain level as the allocation of functions

and tasks.

We have proposed several extensions to an existing notation for describing user tasks

in order to make it possible to represent in an explicit manner these three elements. We

have demonstrated on a case study that the extended notation makes it possible to de-

scribe these three elements on a concrete example and that these descriptions provide

complementary information with respect to the Levels of Automation classical ap-

proach for automation design. Future work will be dedicated to the use of this notation

at design time to design function allocation between the system and the user in order to

avoid the pitfalls exhibited by [28] and build systems that support best operators in their

tasks.

However, in a similar way as human can make errors, automation can fail and asking

user to take over is not a viable option [1]. In order to ensure continuity of service, the

automation should degrade in a graceful way, reconfiguring itself as this can be done

with interactive or classical systems [3]. Such dynamic reconfigurations raise interest-

ing and challenging issues that are not covered by the presented approach but will be

addressed in future work. Finally, system behavior description might require more pow-

erful notations (for instance making explicit large number of states) than the one of

HAMSTERS. In order to address this, the use of complementary and compatible nota-

tions will be required as proposed in [2].

References

1. Bainbridge, L. (1983). Ironies of automation. Automatica, 19, 775-780.

2. Barboni E., Ladry J-F., Navarre D., Palanque P., Winckler M. Beyond Modelling: An Inte-

grated Environment Supporting Co-Execution of Tasks and Systems Models. In Proc. of

EICS ‘10. ACM, 143-152.

3. Basnyat S., Navarre D., Palanque P.. Usability Service Continuation through Reconfigura-

tion of Input and Output Devices in Safety Critical Interactive Systems. International Con-

ference on Computer Safety, Reliability and Security (SAFECOMP 2008), Newscastle, UK,

Vol. LNCS, Springer-Verlag, 2008.

4. Boy, G. Cognitive Function Analysis for Human-Centered Automation of Safety-Critical

Systems. Proceedings of ACM CHI 1998, 265-272 (1998).

5. Boy, G. Orchestrating Situation Awareness and Authority in Complex Socio-technical Sys-

tems. CSDM 2012: 285-296

6. Bradshaw J. M., Hoffman R. R, Woods D. D., and Johnson M. The Seven Deadly Myths of

“Autonomous Systems.” IEEE Intelligent Systems 28, 3: 54–61 (2013).

19

7. Cummings M. L. and Bruni S. 2009. Collaborative Human– Automation Decision Making.

In Springer Handbook of Automation (pp. 437-447). Springer Berlin Heidelberg. LNCS

Homepage, http://www.springer.com/lncs, last accessed 2016/11/21.

8. Dearden, A., Harrison, M. D., Wright, P.C. Allocation of function: scenarios, context and

the economics of effort. Int. J. Hum.-Comput. Stud. 52(2): 289-318 (2000).

9. Dictionary. English dictionary. www.dictionary.com/browse/automation, last accessed Sep-

tember 2018.

10. Dittmar, A., Forbrig, P. Selective modeling to support task migratability of interactive arti-

facts. In Proc. of the 13th IFIP TC 13 international conference on Human-computer interac-

tion - Volume Part III (INTERACT'11), Vol. Part III. Springer-Verlag, Berlin, Heidelberg,

571-588 (2011).

11. Flemisch, F., Heesen, M., Hesse, T., Kelsch, J., Schieben, A., Beller, J. Towards a dynamic

balance between humans and automation: Authority, ability, responsibility and control in

shared and cooperative control situations. Cognition, Technology & Work, 14 (1) (2012),

pp. 3-18.

12. Flemisch F., Adams C., Conway S., Goodrich K. et al. The H metaphor as a guideline for

vehicle automation and interaction, 1975, NASA TM, 2003-212672.

13. Fahssi R., Martinie C., Palanque P: Enhanced Task Modelling for Systematic Identification

and Explicit Representation of Human Errors. INTERACT (4) 2015: 192-212.

14. Gombolay, M. C., Gutierrez, R. A., Clarke, S. G., Sturla, G. F. and Shah, J. A. 2015. Deci-

sion-making authority, team efficiency and human worker satisfaction in mixed human---

robot teams. Auton. Robots 39, 3 (October 2015), 293-312.

15. J3016 Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated

Driving Systems SAE International: (2014).

16. Loer, K., Hildebrandt, M., Harrison, M. D. Analysing Dynamic Function Scheduling Deci-

sions. Human Error, Safety and Systems Development 2004, 45-60.

17. Martinie C., Palanque P., Winckler M. Structuring and Composition Mechanisms to Address

Scalability Issues in Task Models. IFIP TC 13 INTERACT conference, (2011) 589-609,

Springer Verlag.

18. Martinie C., Palanque P., Barboni E., Winckler M., Ragosta M., Pasquini A., Lanzi P. For-

mal Tasks and Systems Models as a Tool for Specifying and Assessing Automation Designs

(regular paper). 1st international Conference on Application and Theory of Automation in

Command and Control Systems, (ATACCS 2011) Barcelona, Spain, May 2011, ACM DL

19. Miller, C., A., Parasuraman, R. Designing for flexible interaction between humans and au-

tomation: delegation interfaces for supervisory control. Human Factors, 49, 57-75 (2007).

20. Misra, J., Cook, W.R. Computation Orchestration: A Basis for Wide-Area Computing. J.

Software and Systems Modeling, May 2006.

21. Oxford. English Dictionnary. https://en.oxforddictionaries.com/definition, last accessed

April 2018.

22. Parasuraman, R.; Sheridan, T.B. & Wickens, C.D. "A model for types and levels of human

interaction with automation" Systems, Man and Cybernetics, Part A: Systems and Humans,

IEEE Trans. on, vol.30, no.3, pp.286-297, May 2000.

23. Pocock, S., Harrison, M. D., Wright, P. C., Johnson, P. THEA: A Technique for Human

Error Assessment Early in Design. INTERACT 2001: 247-254

24. Rovatsos, M. Diochnos; D. I., Wen, Z., Ceppi, S., and Andreadis, P. 2017. SmartOrch: an

adaptive orchestration system for human-machine collectives. In Proceedings of the Sym-

posium on Applied Computing (SAC '17). ACM, New York, NY, USA, 37-44.

25. Scerbo, M. Adaptive automation. In W. Karwowski (Ed.), International encyclopedia of er-

gonomics and human factors (pp. 1077–1079). London: Taylor & Francis (2001).

20

26. Vagia M., Transeth A. A., Fjerdingen S. A. A literature review on the levels of automation

during the years. What are the different taxonomies that have been proposed? Applied Er-

gonomics 53: 190–202 (2016).

27. Wright, P. C., Dearden, A., Fields, B. Function allocation: a perspective from studies of

work practice. Int. J. Hum.-Comput. Stud. 52(2): 335-355 (2000)

28. Yerkes RM, Dodson JD (1908). "The relation of strength of stimulus to rapidity of habit-

formation". Journal of Comparative Neurology and Psychology 18: 459–482.

