Bounds for the estimation of matrix-valued parameters of a Gaussian random process - Computational Imaging and Vision
Article Dans Une Revue Signal Processing Année : 2023

Bounds for the estimation of matrix-valued parameters of a Gaussian random process

Résumé

This paper derives and studies Bayesian Cramér-Rao lower bounds for the mean squared error of covariance matrices that are structured as weighted sums of symmetric positive definite matrices associated with a circularly-symmetric Gaussian statistical model. This model naturally appears in a number of important applications, including multivariate multifractal analysis and vector-valued additive Gaussian processes. As an intermediary result, we derive a novel expression for the expectation of compositions of Wishart random matrices. We provide extensive numerical simulation results for analyzing the derived bounds and their properties, and illustrate their use for the multifractal analysis of bivariate time series.
Fichier principal
Vignette du fichier
1-s2.0-S0165168423001809-main.pdf (1.21 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04254235 , version 1 (23-10-2023)

Licence

Identifiants

Citer

Lorena Leon Arencibia, Herwig Wendt, Jean-Yves Tourneret. Bounds for the estimation of matrix-valued parameters of a Gaussian random process. Signal Processing, 2023, 211, pp.109106. ⟨10.1016/j.sigpro.2023.109106⟩. ⟨hal-04254235⟩
186 Consultations
63 Téléchargements

Altmetric

Partager

More