A Compilation and Run-Time Framework for Maximizing Performance of Self-scheduling Algorithms - Network and Parallel Computing Access content directly
Conference Papers Year : 2014

A Compilation and Run-Time Framework for Maximizing Performance of Self-scheduling Algorithms

Abstract

Ordinary programs contain many parallel loops which account for a significant portion of these programs’ completion time. The parallel executions of such loops can significantly speedup performance of modern multi-core systems. We propose a new framework - Locality Aware Self-scheduling (LASS) - for scheduling parallel loops to multi-core systems and boost up performance of known self-scheduling algorithms in diverse execution conditions. LASS enforces data locality, by forcing the execution of consecutive chunks of iterations to the same core, and favours load balancing with the introduction of a work-stealing mechanism. LASS is evaluated on a set of kernels on a multi-core system with 16 cores. Two execution scenarios are considered. In the first scenario our application runs alone on top of the operating system. In the second scenario our application runs in conjunction with an interfering parallel job. The average speedup achieved by LASS for first execution scenario is 11% and for the second one is 31%.
Fichier principal
Vignette du fichier
978-3-662-44917-2_38_Chapter.pdf (789.95 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01403116 , version 1 (25-11-2016)

Licence

Attribution

Identifiers

Cite

Yizhuo Wang, Laleh Aghababaie Beni, Alexandru Nicolau, Alexander V. Veidenbaum, Rosario Cammarota. A Compilation and Run-Time Framework for Maximizing Performance of Self-scheduling Algorithms. 11th IFIP International Conference on Network and Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. pp.459-470, ⟨10.1007/978-3-662-44917-2_38⟩. ⟨hal-01403116⟩
46 View
110 Download

Altmetric

Share

Gmail Facebook X LinkedIn More