Distributed Vertex-Cut Partitioning - LNCS 8460: Distributed Applications and Interoperable Systems
Conference Papers Year : 2014

Distributed Vertex-Cut Partitioning

Abstract

Graph processing has become an integral part of big data analytics. With the ever increasing size of the graphs, one needs to partition them into smaller clusters, which can be managed and processed more easily on multiple machines in a distributed fashion. While there exist numerous solutions for edge-cut partitioning of graphs, very little effort has been made for vertex-cut partitioning. This is in spite of the fact that vertex-cuts are proved significantly more effective than edge-cuts for processing most real world graphs. In this paper we present Ja-be-Ja-vc, a parallel and distributed algorithm for vertex-cut partitioning of large graphs. In a nutshell, Ja-be-Ja-vc is a local search algorithm that iteratively improves upon an initial random assignment of edges to partitions. We propose several heuristics for this optimization and study their impact on the final partitioning. Moreover, we employ simulated annealing technique to escape local optima. We evaluate our solution on various graphs and with variety of settings, and compare it against two state-of-the-art solutions. We show that Ja-be-Ja-vc outperforms the existing solutions in that it not only creates partitions of any requested size, but also requires a vertex-cut that is better than its counterparts and more than 70% better than random partitioning.
Fichier principal
Vignette du fichier
326177_1_En_15_Chapter.pdf (378.33 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01287742 , version 1 (14-03-2016)

Licence

Identifiers

Cite

Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Seif Haridi. Distributed Vertex-Cut Partitioning. 4th International Conference on Distributed Applications and Interoperable Systems (DAIS), Jun 2014, Berlin, Germany. pp.186-200, ⟨10.1007/978-3-662-43352-2_15⟩. ⟨hal-01287742⟩
101 View
349 Download

Altmetric

Share

More