Analyzing Stability of Algorithmic Systems Using Algebraic Constructs
Abstract
In general, the modeling and analysis of algorithmic systems involve discrete structural elements. However, the modeling and analysis of recursive algorithmic systems can be done in the form of differential equation following control theoretic approaches. In this paper, the modeling and analysis of generalized algorithmic systems are proposed based on heuristics along with z-domain formulation in order to determine the stability of the systems. The recursive algorithmic systems are analyzed in the form of differential equation for asymptotic analysis. The biplane structure is employed for determining the boundary of the recursions, stability and, oscillatory behaviour. This paper illustrates that biplane structural model can compute the convergence of complex recursive algorithmic systems through periodic perturbation.
Origin | Files produced by the author(s) |
---|