Outlier Removal in 2D Leap Frog Algorithm - Computer Information Systems and Industrial Management Access content directly
Conference Papers Year : 2012

Outlier Removal in 2D Leap Frog Algorithm


In this paper a 2D Leap Frog Algorithm is applied to solve the so-called noisy Photometric Stereo problem. In 3-source Photometric Stereo (noiseless or noisy) an ideal unknown Lambertian surface is illuminated from distant light-source directions (their directions are assumed to be linearly independent). The subsequent goal, given three images is to reconstruct the illuminated object’s shape. Ultimately, in the presence of noise, this problem leads to a highly non-linear optimization task with the corresponding cost function having a large number of independent variables. One method to solve it is 2D Leap Frog Algorithm. During reconstruction, problem that commonly arises, renders the outliers generated in the retrieved shape. In this paper we implement 2D Leap Frog. In particular we focus on choosing snapshot size and on invoking two algorithms that can remove outliers from reconstructed shape. Performance of extended 2D Leap Frog is illustrated by examples chosen especially to demonstrate how this solution is applicable in computer vision. Remarkably, this optimization scheme can also be used for an arbitrary optimization problem depending on large number of variables.
Fichier principal
Vignette du fichier
978-3-642-33260-9_12_Chapter.pdf (2.44 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01551713 , version 1 (30-06-2017)





Ryszard Kozera, Jacek Tchórzewski. Outlier Removal in 2D Leap Frog Algorithm. 11th International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2012, Venice, Italy. pp.146-157, ⟨10.1007/978-3-642-33260-9_12⟩. ⟨hal-01551713⟩
137 View
86 Download



Gmail Facebook X LinkedIn More