An Alpha-Corecursion Principle for the Infinitary Lambda Calculus - Coalgebraic Methods in Computer Science
Conference Papers Year : 2012

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus

Abstract

Gabbay and Pitts proved that lambda-terms up to alpha-equivalence constitute an initial algebra for a certain endofunctor on the category of nominal sets. We show that the terms of the infinitary lambda-calculus form the final coalgebra for the same functor. This allows us to give a corecursion principle for alpha-equivalence classes of finite and infinite terms. As an application, we give corecursive definitions of substitution and of infinite normal forms (Böhm, Lévy-Longo and Berarducci trees).
Fichier principal
Vignette du fichier
978-3-642-32784-1_8_Chapter.pdf (445.67 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01539877 , version 1 (15-06-2017)

Licence

Identifiers

Cite

Alexander Kurz, Daniela Petrişan, Paula Severi, Fer-Jan De Vries. An Alpha-Corecursion Principle for the Infinitary Lambda Calculus. 11th International Workshop on Coalgebraic Methods in Computer Science (CMCS), Mar 2012, Tallinn, Estonia. pp.130-149, ⟨10.1007/978-3-642-32784-1_8⟩. ⟨hal-01539877⟩
80 View
80 Download

Altmetric

Share

More