Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas
Abstract
Tor provides anonymity to millions of users around the globe, which has made it a valuable target for malicious actors. As a low-latency anonymity system, it is vulnerable to traffic correlation attacks from strong passive adversaries, such as large autonomous systems. Estimations of the risk posed by such attackers as well as the evaluation of defense strategies are mostly based on simulations and data retrieved from BGP updates. However, this might only provide an incomplete view of the network and thereby influence the results of such analyses. It has already been acknowledged in previous studies that direct path measurements, e.g. with traceroute, could provide valuable information. But in the past, such measurements were thought to be impossible, because they require the placement of measurement nodes in the same ASes as the respective Tor network nodes. With the rise of new technologies and methodologies, this assumption needs to be re-evaluated.In this paper we present a novel methodology to utilize the RIPE Atlas framework, a network of more than 10,000 probes worldwide, to actively perform traceroute commands from and to Tor guard and exit relays to clients and destinations. Based on multiple global scans our results validate previous results and show the large influence on Tor posed by a limited set of ASes. These are in a strong position to carry out effective correlation attacks on Tor traffic. With this work, we provide an additional source of information that can be used together with BGP route information to increase the accuracy of future models and simulations of Tor and ultimately improve anonymity on the Internet.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|