A Consumer BCI for Automated Music Evaluation Within a Popular On-Demand Music Streaming Service “Taking Listener’s Brainwaves to Extremes”
Abstract
We investigated the possibility of a using a machine-learning scheme in conjunction with commercial wearable EEG-devices for translating listener’s subjective experience of music into scores that can be used for the automated annotation of music in popular on-demand streaming services.Based on the established -neuroscientifically sound- concepts of brainwave frequency bands, activation asymmetry index and cross-frequency-coupling (CFC), we introduce a Brain Computer Interface (BCI) system that automatically assigns a rating score to the listened song.
Our research operated in two distinct stages: (i) a generic feature engineering stage, in which features from signal-analytics were ranked and selected based on their ability to associate music induced perturbations in brainwaves with listener’s appraisal of music. (ii) a personalization stage, during which the efficiency of extreme learning machines (ELMs) is exploited so as to translate the derived patterns into a listener’s score. Encouraging experimental results, from a pragmatic use of the system, are presented.
Origin | Files produced by the author(s) |
---|
Loading...