ARMA Modelling for Sleep Disorders Diagnose - Technological Innovation for the Internet of Things Access content directly
Conference Papers Year : 2013

ARMA Modelling for Sleep Disorders Diagnose


Differences in EEG sleep spindles constitute a promising indicator of sleep disorders. In this paper Sleep Spindles are extracted from real EEG data using a triple (Short Time Fourier Transform-STFT; Wavelet Transform-WT; Wave Morphology for Spindle Detection-WMSD) algorithm. After the detection, an Autoregressive–moving-average (ARMA) model is applied to each Spindle and finally the ARMA’s coefficients’ mean is computed in order to find a model for each patient. Regarding only the position of real poles and zeros, it is possible to distinguish normal from Parasomnia REM subjects.
Fichier principal
Vignette du fichier
978-3-642-37291-9_29_Chapter.pdf (4 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01348764 , version 1 (25-07-2016)





João Da Costa, Manuel Duarte Ortigueira, Arnaldo Batista, Teresa Paiva. ARMA Modelling for Sleep Disorders Diagnose. 4th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Apr 2013, Costa de Caparica, Portugal. pp.271-278, ⟨10.1007/978-3-642-37291-9_29⟩. ⟨hal-01348764⟩
59 View
72 Download



Gmail Facebook X LinkedIn More