Model-Based Interpolation, Prediction, and Approximation
Abstract
Model-based interpolation, prediction, and approximation are contingent on the choice of model: since multiple alternative models typically can reasonably be entertained for each of these tasks, and the results are correspondingly varied, this often is a considerable source of uncertainty. Several statistical methods are illustrated that can be used to assess the contribution that this uncertainty component makes to the uncertainty budget: when interpolating concentrations of greenhouse gases over Indianapolis, predicting the viral load in a patient infected with influenza A, and approximating the solution of the kinetic equations that model the progression of the infection.
Origin | Files produced by the author(s) |
---|
Loading...