Pollen Classification Based on Geometrical, Descriptors and Colour Features Using Decorrelation Stretching Method - Artificial Intelligence Applications and Innovations - Part II Access content directly
Conference Papers Year : 2011

Pollen Classification Based on Geometrical, Descriptors and Colour Features Using Decorrelation Stretching Method

Jaime R. Ticay-Rivas
  • Function : Author
  • PersonId : 1014175
Carlos M. Travieso
  • Function : Author
  • PersonId : 1014177
Jorge Arroyo-Hernández
  • Function : Author
  • PersonId : 1014178
Santiago T. Pérez
  • Function : Author
  • PersonId : 1014179
Jesús B. Alonso
  • Function : Author
  • PersonId : 1014180
Federico Mora-Mora
  • Function : Author
  • PersonId : 1014181

Abstract

Saving earth’s biodiversity for future generations is an important global task, where automatic recognition of pollen species by means of computer vision represents a highly prioritized issue. This work focuses on analysis and classification stages. A combination of geometrical measures, Fourier descriptors of morphological details using Discrete Cosine Transform (DCT) in order to select their most significant values, and colour information over decorrelated stretched images are proposed as pollen grains discriminative features. A Multi-Layer neural network was used as classifier applying scores fusion techniques. 17 tropical honey plant species have been classified achieving a mean of 96.49% ± 1.16 of success.
Fichier principal
Vignette du fichier
978-3-642-23960-1_41_Chapter.pdf (197.66 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01571461 , version 1 (02-08-2017)

Licence

Identifiers

Cite

Jaime R. Ticay-Rivas, Marcos Del Pozo-Baños, Carlos M. Travieso, Jorge Arroyo-Hernández, Santiago T. Pérez, et al.. Pollen Classification Based on Geometrical, Descriptors and Colour Features Using Decorrelation Stretching Method. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. pp.342-349, ⟨10.1007/978-3-642-23960-1_41⟩. ⟨hal-01571461⟩
131 View
120 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More