Automated Classification of Medical-Billing Data
Abstract
When building a data pipeline to process medical claims there are many instances where automated classification schemes could be used to improve speed and efficiency. Medical bills can be classified by the statutory environment which determines appropriate adjudication of payment disputes. We refer to this classification result as the adjudication type of a bill. This classification can be used to determine appropriate payment for medical services.Using a set of 182,811 medical bills, we develop a procedure to quickly and accurately determine the correct adjudication type. A simple naïve Bayes classifier based on training set class occurrences gives 92.8% accuracy, which can be remarkably improved by instead presenting these probabilities to an artificial neural network, yielding 96.8 ±0.5 % accuracy.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|
Loading...