Time-Frequency Analysis of Hot Rolling Using Manifold Learning - Engineering Applications of Neural Networks - Part I Access content directly
Conference Papers Year : 2011

Time-Frequency Analysis of Hot Rolling Using Manifold Learning

Francisco J. García
  • Function : Author
  • PersonId : 1014131
Ignacio Díaz
  • Function : Author
  • PersonId : 1014132
Ignacio Álvarez
  • Function : Author
  • PersonId : 1014133
Daniel Pérez
  • Function : Author
  • PersonId : 1014134
Daniel G. Ordonez
  • Function : Author
  • PersonId : 1014135
Manuel Domínguez
  • Function : Author
  • PersonId : 1014136

Abstract

In this paper, we propose a method to compare and visualize spectrograms in a low dimensional space using manifold learning. This approach is divided in two steps: a data processing and dimensionality reduction stage and a feature extraction and a visualization stage. The procedure is applied on different types of data from a hot rolling process, with the aim to detect chatter. Results obtained suggest future developments and applications in hot rolling and other industrial processes.
Fichier principal
Vignette du fichier
978-3-642-23957-1_17_Chapter.pdf (3.18 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01571375 , version 1 (02-08-2017)

Licence

Attribution

Identifiers

Cite

Francisco J. García, Ignacio Díaz, Ignacio Álvarez, Daniel Pérez, Daniel G. Ordonez, et al.. Time-Frequency Analysis of Hot Rolling Using Manifold Learning. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. pp.150-155, ⟨10.1007/978-3-642-23957-1_17⟩. ⟨hal-01571375⟩
36 View
56 Download

Altmetric

Share

Gmail Facebook X LinkedIn More